Background, aims and objectives:

Flooding is a major and growing problem for rural communities throughout the UK. The winter storms of 2013–14 demonstrated how communities can become cut-off and people’s lives can be disrupted and devastated by the effects of flood water. This project aims to provide a more effective way for communities to become resilient in the face of hazards like flooding and seeks to explore the potential for using ‘social learning’ between community members, to understand local flood risks, and work towards a community flood resilience plan that will seek to represent the different types of knowledge by everyone involved.

The project has the following objectives:

1. To adopt a community-centred approach for understanding risks associated with flooding.
2. To encourage the participation of as many people as possible in the project to understand local flood risks, and use as many sources of information as we can from the local area.
3. To create a local plan to manage flood risks and evaluate the vulnerability we have to flooding as far as possible.

Social learning for community resilience: reducing the risks from flooding in and around Crediton

Previous research and why the project is relevant

There has been increasing controversy in recent years about the cause of flooding events in the UK and what can be done to reduce the risks posed by flooding to lives, property and businesses. In part, this controversy has stemmed from the different ways people understand the environment around them. For example, much of the debate in the aftermath of the flooding on the Somerset Levels in 2014 has focused on the merits and problems of developing ideas, with those in the scientific community holding different views from some in the local communities. Scientists no longer dispute whether humans are changing the climate, but instead study how serious the risks will be and how to address them. In the south-west, climate change means heavier and more intense bouts of rainfall. But the media doesn’t always reflect this, sometimes giving the impression that scientists are unsure about climate change. What this means is that people draw on different sources of knowledge to understand the changing environment around them. This project is about recognising that there are different types of knowledge we can use, and aims to find ways of reaching some consensus about how they can be used together. The draws on previous work from the University of Exeter, where researchers have worked with Exmoor National Park Authority and people in Dulverton, Somerset, to explore the causes of flooding in the town.

Why focus on Crediton as a case study?

Crediton does not have a severe flooding problem at present, yet it is a locality that is surrounded by low-lying areas with steep hills; consequently the town itself might be at greater risk of sudden and severe flash floods.

The project is being run by the Crediton Flood Resilience Group, which has representatives from community flood risk management in the area. The project has the following objectives:

1. To adopt a community-centred approach for understanding local flood risks, and use as many sources of information as we can from the local area.
2. To encourage the participation of as many people as possible in the project to understand local flood risks, and use as many sources of information as we can from the local area.
3. To create a local plan to manage flood risks and evaluate the vulnerability we have to flooding as far as possible.

The Crediton Flood Resilience Group

The project is being run by the Crediton Flood Resilience Group, which has representatives from the community of Crediton, Devon County Council, the Environment Agency, Devon and Somerset Fire and Rescue Service, Climate Outreach Information Network and climate change researchers from the University of Exeter.

The group has begun the process of exploring current understandings of flood risk and the ways Crediton’s vulnerability will change in the future. We are now in the process of hearing the stories and views of everyone concerned with flooding in and around Crediton.

Background, aims and objectives:

Flooding is a major and growing problem for rural communities throughout the UK. The winter storms of 2013–14 demonstrated how communities can become cut-off and people’s lives can be disrupted and devastated by the effects of flood water. This project aims to provide a more effective way for communities to become resilient in the face of hazards like flooding and seeks to explore the potential for using ‘social learning’ between community members, to understand local flood risks, and work towards a community flood resilience plan that will seek to represent the different types of knowledge by everyone involved.

The project has the following objectives:

1. To adopt a community-centred approach for understanding risks associated with flooding.
2. To encourage the participation of as many people as possible in the project to understand local flood risks, and use as many sources of information as we can from the local area.
3. To create a local plan to manage flood risks and evaluate the vulnerability we have to flooding as far as possible.

Social learning for community resilience: reducing the risks from flooding in and around Crediton

Previous research and why the project is relevant

There has been increasing controversy in recent years about the cause of flooding events in the UK and what can be done to reduce the risks posed by flooding to lives, property and businesses. In part, this controversy has stemmed from the different ways people understand the environment around them. For example, much of the debate in the aftermath of the flooding on the Somerset Levels in 2014 has focused on the merits and problems of developing ideas, with those in the scientific community holding different views from some in the local communities. Scientists no longer dispute whether humans are changing the climate, but instead study how serious the risks will be and how to address them. In the south-west, climate change means heavier and more intense bouts of rainfall. But the media doesn’t always reflect this, sometimes giving the impression that scientists are unsure about climate change. What this means is that people draw on different sources of knowledge to understand the changing environment around them. This project is about recognising that there are different types of knowledge we can use, and aims to find ways of reaching some consensus about how they can be used together. The draws on previous work from the University of Exeter, where researchers have worked with Exmoor National Park Authority and people in Dulverton, Somerset, to explore the causes of flooding in the town.

Why focus on Crediton as a case study?

Crediton does not have a severe flooding problem at present, yet it is a locality that is surrounded by low-lying areas with steep hills; consequently the town itself might be at greater risk of sudden and severe flash floods.

The project is being run by the Crediton Flood Resilience Group, which has representatives from community flood risk management in the area. The project has the following objectives:

1. To adopt a community-centred approach for understanding local flood risks, and use as many sources of information as we can from the local area.
2. To encourage the participation of as many people as possible in the project to understand local flood risks, and use as many sources of information as we can from the local area.
3. To create a local plan to manage flood risks and evaluate the vulnerability we have to flooding as far as possible.

The Crediton Flood Resilience Group

The project is being run by the Crediton Flood Resilience Group, which has representatives from the community of Crediton, Devon County Council, the Environment Agency, Devon and Somerset Fire and Rescue Service, Climate Outreach Information Network and climate change researchers from the University of Exeter.

The group has begun the process of exploring current understandings of flood risk and the ways Crediton’s vulnerability will change in the future. We are now in the process of hearing the stories and views of everyone concerned with flooding in and around Crediton.

Background, aims and objectives:

Flooding is a major and growing problem for rural communities throughout the UK. The winter storms of 2013–14 demonstrated how communities can become cut-off and people’s lives can be disrupted and devastated by the effects of flood water. This project aims to provide a more effective way for communities to become resilient in the face of hazards like flooding and seeks to explore the potential for using ‘social learning’ between community members, to understand local flood risks, and work towards a community flood resilience plan that will seek to represent the different types of knowledge by everyone involved.

The project has the following objectives:

1. To adopt a community-centred approach for understanding risks associated with flooding.
2. To encourage the participation of as many people as possible in the project to understand local flood risks, and use as many sources of information as we can from the local area.
3. To create a local plan to manage flood risks and evaluate the vulnerability we have to flooding as far as possible.

Social learning for community resilience: reducing the risks from flooding in and around Crediton

Previous research and why the project is relevant

There has been increasing controversy in recent years about the cause of flooding events in the UK and what can be done to reduce the risks posed by flooding to lives, property and businesses. In part, this controversy has stemmed from the different ways people understand the environment around them. For example, much of the debate in the aftermath of the flooding on the Somerset Levels in 2014 has focused on the merits and problems of developing ideas, with those in the scientific community holding different views from some in the local communities. Scientists no longer dispute whether humans are changing the climate, but instead study how serious the risks will be and how to address them. In the south-west, climate change means heavier and more intense bouts of rainfall. But the media doesn’t always reflect this, sometimes giving the impression that scientists are unsure about climate change. What this means is that people draw on different sources of knowledge to understand the changing environment around them. This project is about recognising that there are different types of knowledge we can use, and aims to find ways of reaching some consensus about how they can be used together. The draws on previous work from the University of Exeter, where researchers have worked with Exmoor National Park Authority and people in Dulverton, Somerset, to explore the causes of flooding in the town.

Why focus on Crediton as a case study?

Crediton does not have a severe flooding problem at present, yet it is a locality that is surrounded by low-lying areas with steep hills; consequently the town itself might be at greater risk of sudden and severe flash floods.

The project is being run by the Crediton Flood Resilience Group, which has representatives from community flood risk management in the area. The project has the following objectives:

1. To adopt a community-centred approach for understanding local flood risks, and use as many sources of information as we can from the local area.
2. To encourage the participation of as many people as possible in the project to understand local flood risks, and use as many sources of information as we can from the local area.
3. To create a local plan to manage flood risks and evaluate the vulnerability we have to flooding as far as possible.

The Crediton Flood Resilience Group

The project is being run by the Crediton Flood Resilience Group, which has representatives from the community of Crediton, Devon County Council, the Environment Agency, Devon and Somerset Fire and Rescue Service, Climate Outreach Information Network and climate change researchers from the University of Exeter.

The group has begun the process of exploring current understandings of flood risk and the ways Crediton’s vulnerability will change in the future. We are now in the process of hearing the stories and views of everyone concerned with flooding in and around Crediton.

How you can contribute: what else do we need to know?

In trying to re-construct past flooding events in and around Crediton, and in thinking about what factors will influence future events, we need your stories, opinions and advice about what other evidence we need to collect and what could be done in the future to reduce the risks to people, property and livelihoods from flooding in and around the town. Please don’t limit us to merely preventing floods, but thinking about how we can be better prepared and ready to respond when a flood does occur.

What should a community flood resilience plan look like?

Ultimately, the flood resilience group hopes to use your views and evidence to work with Devon County Council, the Environment Agency and the Fire and Rescue Service to write a community flood resilience plan that might look something like:

• Identify areas that are at risk of different kinds of flooding.
• Focus on issues that could make flooding worse.
• Plan for the future through taking into account changes in our climate.
• Engage local people to prepare for and know what to do when a flood occurs.
• Have help and support in place after a flood event.

• These increases are likely to raise the risks of surface water flooding in a town like Crediton, especially in areas with steep hills.
• There is evidence that a lack of maintenance and drain clearing could make flooding worse, in particular flash flooding.
• The different ways in which farmland is managed and cultivated will influence the rate of flooding in Crediton.

Climate change is expected to result in increased rainfall intensity in South West England.
HISTORIC FLOODS IN AND AROUND CREDITON

1800
The earliest reference to flooding around Crediton can be traced to sometime before 1800. Located in an undated and unreferenced clipping in the 'Crediton parish file' (located at the Devon Heritage Centre), an unattributed text discusses rivers including the Eve, Creedy, Yeo and goes on to describes how the: ‘

‘River Yeo…discharges itself…into Fordton-river between Yeovil and Fordton… There are several other tributary streams: and the rich watered meadows, where they flow, produce the most luxuriant herbage. But in a rainy winter, the lowlands are often inundated by the flood waters of the Yeo passing around the gutters of the Broad Marsh’.

1800

1825

1850

1875

1900

1925

1816
The earliest confirmed, dated reference to a flood near Crediton found during this research was located in court case papers of 1816. These papers alleged that flooding at Four Mills, Denbury Three Corner Marsh and Denbury Broad Marsh were caused by the widening (and thereby lowering) of a weir over the River Yeo. The plaintiff claimed that ‘nearly 2 square land yards have been destroyed occasioned by the flood waters of the Yeo passing around the gutters of the Broad Marsh’.

1888
‘The oldest inhabitant here cannot remember a more disastrous thunderstorm’ (Western Times, 10 July 1888, p.3) than those which caused floods in 1888. The article describes flood water converging on Crediton from George Hill, Park Hill, Bell Court and Park Court. Water streamed down the High Street and Searle Street, flooding several houses. At the Public Rooms the force of the flood ‘burst the window; the water pouring in rapidly soon covered the bed’, while water running down Union Inn Hill, Parliament Street, North Street and Park Street swamped homes. The article describes mud and sand blocking drains as responsible for deep water in the middle of High Street, Searle Street, Kiddecott, North Street, East Street, Charlotte Street and at the junction of Station Road and Exeter Road.

1900

1910
An account of heavy rainfall across Devon in 1910 highlights the impact on business and access in Crediton. The Exeter and Devon Gazette (10 December 1910, p. 1) reported that ‘vehicular traffic has been impossible for the past day or two and this has prevented a number of farmers attending the Christmas market’. The water was two feet deep near Moor Acre, and roads at Culver and Downes Mills could not be negotiated. To access the station at Newton St. Cyres, people had to be ‘carried across in carts and traps’.

1924
Crediton Cut Off ran the sub-headline in the Western Times (7 November 1924, p.4) after floods in Coleford, Yeoford, Sandford, Creedy Bridge, Downes and Fordton. In many places roads were several feet under water for instance, at Creedy Bridge the road was impassable at bottom of Moor Acre Hill the water was up to 3 feet deep and at Yeoford it was up to 4 feet. The roads from Yeoford to Pittsleigh and Crediton to Fordton were also flooded. It was a great many years since there was such a flood in the district’ (Western Times 7 November 1924, p.4).
HISTORIC FLOODS IN AND AROUND CREDITON

1950
Reports of a ‘Funnel Cloud’ in Devon made front page news as far as Aberdeen in 1950 (e.g. Aberdeen Journal, 7th July 1950, p.1). The Western Daily Press (7th July 1950, p.1) described the dramatic events: ‘a district nurse’s car was swept down a hill at Crediton, Devon, by floodwater when a freak storm hit the Creedy Valley’. The result of the ‘cloud burst’, which is described as lasting ‘only 20 seconds’, was widespread flooding, including the lower levels of houses in Mill Street that were covered in water and thick mud. On a farm in Newton St. Cyres 20 fruit trees were reported as having been uprooted by the storm.

1975
The exceptionally heavy rainfall in September and early October 1975 had a significant impact in and around Crediton. At the time, the year was the third wettest on record (Brierley 1964, 151). On 30th September there was ‘serious and unexpected damage’ (Devon Flood Story 1960, p.1) in Crediton, while in Fordton, cottages collapsed (see picture). On the 6th October, Crediton was ‘completely cut off by road and rail for some hours’. Ground beneath a bridge on the railway line just one mile from Crediton Station was ‘scooped out to a depth of about 20 feet’ and tracks were ‘suspended in mid-air for 150 feet’ (Brierley 1960, 163).

2012
In November 2012 Crediton became ‘a virtual island’ due to flooding. Floodwaters closed roads around the town including the A377 at Cowley, A3072 at Bickleigh Bridge and the A283 at Whiddon Down. With the Tarka line already closed, access to Crediton was so restricted that several businesses were unable to open due to a lack of staff.

Acknowledgements:
Images reproduced with kind permission of the British Newspaper Archive (http://www.britishnewspaperarchive.co.uk) and the Crediton Courier. Thanks you to the Express and Echo and Western Morning News.
IDENTIFYING ‘VULNERABILITIES’

Understanding what else we need to know, apart from historic analyses and climate change

So far in our research, we have gained a good overview of where floods have occurred in the past and what impacts they’ve had. Indeed, we now know something about how weather patterns are likely to change in the future, with increasing rainfall intensities. However, to understand how we might become more vulnerable in the future, and how we can deal with this, we need to know more about other influences on flooding.

This poster outlines some factors that can increase flood risks. You might be able to tell us more about these and how they work, and you might know of other influences that we’ve not included here.

Climate change predictions indicate that more extreme weather and intense rainfall events will occur in the future

Projected Changes during the 21st Century in Extreme Climate Phenomena and their Likelihood

Representative Examples of Projected Impacts (all high confidence of occurrence in some or all)

Simple Extremes

- More intense precipitation events
 (Very likely over many areas)
- Increased flood, landslides, avalanche, and mudslide damage
- Increased soil erosion
- Increased flood runoff could increase recharge of some floodplain aquifers
- Increased pressure on government and private flood insurance systems and disaster relief

More complex extremes

- Increased sea level rise
- Increased tropical cyclone intensity
- Increased pressure on government and private flood insurance systems and disaster relief

The role of drought and drain management, both on farmland and in urban areas

Once water has been delivered to drains on farmland and on roads or on residential development, how these drains are managed and how they are maintained can have a major impact on localized flooding events. For example, a severe thunderstorm over Exeter in November 2014 caused flash flooding and inundated a number of properties, largely because drains were blocked by leaves.

How we manage our infrastructure of drains, culverts (streams running underground), urban streams and rivers makes a difference to how much water can escape into primary water courses during flood events and can make the difference between homes being inundated or staying dry.

The particular role of the urban drainage system in contributing to the severity and geography of the flood became, in the days and weeks following, a matter of much contention. Some argued that this engineered system simply did not have the design capacity to cope with the extreme and very unusual summer rainfall of June 2007; others that various elements of the system were not properly functioning due to poor maintenance and management, including the inclusion of trees and grass and culvert blockages.

Wade et al. (2011, pp. 2388) discusses the impact of drainage systems on the Hull floods of 2007

Land managers can intervene to control run-off and retain water in the landscape by, for example, (1) land use changes, such as a switch from arable cropping to grassland or forestry; (2) changes in land management practices that avoid soil compaction and erosion damage, such as controlled machinery ‘traffic’ in fields or avoidance of field operations under wet conditions, and (3) measures to ‘slow water down’ such as retention ponds and field boundary features such as grass or wooded buffer zones.

The role of responses to flood events and asking ‘who’s responsible?’

In the event that a flood does occur, whose job is it to react? In Britain, we’ve traditionally relied on services delivered by local government to provide immediate assistance and longer term recovery. Yet in rural communities in particular, there are often well-established networks of support that do or could provide help and advice in preparing for floods and dealing with their aftermath. This is what some call ‘community resilience’ and is about re-balancing the responsibility between what local government should do, and what we can do for ourselves. The question is what’s the right balance?

One approach, taken by the community of Loswithiel in Cornwall, is to have a dedicated group of volunteers who act as flood wardens. Their role is to engage people to think about floods before they happen, to issue local flood warnings, help people to prepare for a flood, and coordinate responses afterwards. You can see their work on YouTube (search for ‘Loswithiel Flood Plan’).

The role of responses to flood events and asking ‘who’s responsible?’

The particular role of the urban drainage system in contributing to the severity and geography of the flood became, in the days and weeks following, a matter of much contention. Some argued that this engineered system simply did not have the design capacity to cope with the extreme and very unusual summer rainfall of June 2007; others that various elements of the system were not properly functioning due to poor maintenance and management, including the inclusion of trees and grass and culvert blockages.

Wade et al. (2011, pp. 2388) discusses the impact of drainage systems on the Hull floods of 2007

Land managers can intervene to control run-off and retain water in the landscape by, for example, (1) land use changes, such as a switch from arable cropping to grassland or forestry; (2) changes in land management practices that avoid soil compaction and erosion damage, such as controlled machinery ‘traffic’ in fields or avoidance of field operations under wet conditions, and (3) measures to ‘slow water down’ such as retention ponds and field boundary features such as grass or wooded buffer zones.

The role of responses to flood events and asking ‘who’s responsible?’

In the event that a flood does occur, whose job is it to react? In Britain, we’ve traditionally relied on services delivered by local government to provide immediate assistance and longer term recovery. Yet in rural communities in particular, there are often well-established networks of support that do or could provide help and advice in preparing for floods and dealing with their aftermath. This is what some call ‘community resilience’ and is about re-balancing the responsibility between what local government should do, and what we can do for ourselves. The question is what’s the right balance?

One approach, taken by the community of Loswithiel in Cornwall, is to have a dedicated group of volunteers who act as flood wardens. Their role is to engage people to think about floods before they happen, to issue local flood warnings, help people to prepare for a flood, and coordinate responses afterwards. You can see their work on YouTube (search for ‘Loswithiel Flood Plan’).

The role of responses to flood events and asking ‘who’s responsible?’

The particular role of the urban drainage system in contributing to the severity and geography of the flood became, in the days and weeks following, a matter of much contention. Some argued that this engineered system simply did not have the design capacity to cope with the extreme and very unusual summer rainfall of June 2007; others that various elements of the system were not properly functioning due to poor maintenance and management, including the inclusion of trees and grass and culvert blockages.

Wade et al. (2011, pp. 2388) discusses the impact of drainage systems on the Hull floods of 2007

Land managers can intervene to control run-off and retain water in the landscape by, for example, (1) land use changes, such as a switch from arable cropping to grassland or forestry; (2) changes in land management practices that avoid soil compaction and erosion damage, such as controlled machinery ‘traffic’ in fields or avoidance of field operations under wet conditions, and (3) measures to ‘slow water down’ such as retention ponds and field boundary features such as grass or wooded buffer zones.

The role of responses to flood events and asking ‘who’s responsible?’

In the event that a flood does occur, whose job is it to react? In Britain, we’ve traditionally relied on services delivered by local government to provide immediate assistance and longer term recovery. Yet in rural communities in particular, there are often well-established networks of support that do or could provide help and advice in preparing for floods and dealing with their aftermath. This is what some call ‘community resilience’ and is about re-balancing the responsibility between what local government should do, and what we can do for ourselves. The question is what’s the right balance?

One approach, taken by the community of Loswithiel in Cornwall, is to have a dedicated group of volunteers who act as flood wardens. Their role is to engage people to think about floods before they happen, to issue local flood warnings, help people to prepare for a flood, and coordinate responses afterwards. You can see their work on YouTube (search for ‘Loswithiel Flood Plan’).

The role of responses to flood events and asking ‘who’s responsible?’

The particular role of the urban drainage system in contributing to the severity and geography of the flood became, in the days and weeks following, a matter of much contention. Some argued that this engineered system simply did not have the design capacity to cope with the extreme and very unusual summer rainfall of June 2007; others that various elements of the system were not properly functioning due to poor maintenance and management, including the inclusion of trees and grass and culvert blockages.

Wade et al. (2011, pp. 2388) discusses the impact of drainage systems on the Hull floods of 2007

Land managers can intervene to control run-off and retain water in the landscape by, for example, (1) land use changes, such as a switch from arable cropping to grassland or forestry; (2) changes in land management practices that avoid soil compaction and erosion damage, such as controlled machinery ‘traffic’ in fields or avoidance of field operations under wet conditions, and (3) measures to ‘slow water down’ such as retention ponds and field boundary features such as grass or wooded buffer zones.
IDENTIFYING VULNERABILITIES AND LEARNING TO COPE

In the first four posters, we described the work of the Crediton Flood Resilience Group and the types of factors that can influence vulnerability to flooding. However, these posters only represent part of the story: you have the other half. We would like to know what stories or memories you have of flooding in the local area, what you think could lead to more flooding in and around Crediton, and how we could manage floods better in the future, in particular with the likelihood of increasing rainfall intensities.

Please have a look at the following questions and use the sticky notes provided to share your thoughts under the relevant question(s):

- Are there memories you have of flooding in the local area and would you like to record these with a member of the research team (option to provide contact details)?
- What do you think are the key influences on flooding in and around Crediton, such as extreme rainfall events, climate change, drain maintenance, farming practices, new developments, or other influences?
- What do you think the most effective ways are to manage floods in the future?
- What role do you think the community can play in reducing the risks associated with flooding and its impacts?